IDENTIFYING MACROMOLECULES IN Nutrient LAB

In this lab, with the use of indicators as chemical detection tools, you will analyze a variety of foods for the presence of nutrients.

Detection is based upon observing a chemical change that takes place most often a change in color.

Lab Objective

Identify the presence of major nutrients such as simple carbohydrates (glucose), complex carbohydrates (starch), protein and fat in common foods.

What is an indicator?

 Indicators are chemical compounds used to detect the presence of other compounds.

Background Information

INDICATOR	MACRO- MOLECULE	NEGATIVE TEST	POSITIVE TEST
Benedict's solution	simple carbohydrate	blue	orange
lodine solution	complex carbohydrate	dark red	black
Biuret solution	protein	blue	violet, black
Sudan IV	lipid	dark red	reddish- orange

Test for Simple Carbohydrates Benedict's solution

- Benedict's solution is a chemical indicator for simple sugars such as glucose: C₆H₁₂O₆.
- Aqua blue: negative test; yellow/green/brick red, etc.: positive test

Test for Simple Carbohydrates Benedict's solution

 Unlike some other indicators, Benedict's solution does not work at room temperature it must be heated first.

Test for Complex Carbohydrates Iodine Solution

Iodine solution → color change = blue to black

Test for Complex Carbohydrates lodine solution

- Iodine solution is an indicator for a molecule called starch.
- Starch is a huge molecule made up of hundreds of simple sugar molecules (such as glucose) connected to each other.

Test for Protein (amino acids) Biuret solution

Test for Fats (lipids) Sudan IV

 If lipids are present the Sudan IV will stain them reddish-orange (positive test).

Question

Why didn't the test tube containing sucrose change colors?

Question

Why didn't the test tube containing starch change colors?

Reducing and Non-Reducing Sugars

- Reduction is the chemist's term for electron gain
- A molecule that gains an electron is thus......
 - "reduced"
- A molecule that donates electrons is called a.....
 - "reducing agent"
- A sugar that donates electrons is called a......
 - "reducing sugar"
- The electron is donated by the carbonyl group
- Benedict's reagent changes colour when exposed to a reducing agent

Aldehyde Group Carbonyl (aldo) group Η

Benedict's Test

- Benedict's reagent undergoes a complex colour change when it is reduced
- The intensity of the colour change is proportional to the concentration of reducing sugar present
- The colour change sequence is:
 - Blue...
 - green...
 - yellow...
 - orange...
 - brick red

The carbonyl group - monosaccharides

- The carbonyl group is "free" in the straight chain form
- But not free in the ring form
- BUT remember the ring form and the straight chain form are interchangeable
- So all monosaccharides are reducing sugars
- All monosaccharides reduce Benedict's reagent

The carbonyl group – disaccharides - maltose

- In some disaccharides
 e.g. maltose one of the
 carbonyl groups is still
 "free"
- Such disaccharides are reducing sugars
- They reduce Benedict's reagent

The carbonyl group – disaccharides - sucrose

- In some disaccharides e.g. sucrose **both** of the carbonyl groups are involved in the glycosidic bond
- So there are no free carbonyl groups
- Such sugars are called nonreducing sugars
- They do NOT reduce Benedict's reagent

Note: fructose has been reversed

The carbonyl group – disaccharides - sucrose

- The subunits of sucrose (glucose and fructose) are reducing sugars
- If sucrose is hydrolysed the subunit can then act as reducing sugars
- This is done in the lab by acid hydrolysis
- After acid hydrolysis sucrose will reduce Benedict's reagent

Note: fructose has been reversed

alpha-glucose + fructose ===== sucrose + H₂O

REDUCING AND NONREDUCING SUGARS: MALTOSE AND FRUCTOSE

D-GLUCOSE

sucrose - Glc(a, 1-->2)Fru

(can't open to form an aldehyde)

β-D-fructofuraniose

HOH₂C

3

CH₂OH

OH