Chapter 26: Phylogeny and the Tree of Life

You Must Know

- The taxonomic categories and how they indicate relatedness.
- How systematics is used to develop phylogenetic trees.
- How to construct a phylogenetic tree that represents processes of biological evolution.
- The three domains of life, including their similarities and their differences.
- The significance of widely conserved processes across the three domains.

26.1 Phylogenies Show Evolutionary Relationships

- _________ is the evolutionary history of a species or group of related species.
- _________ is a discipline focused on classifying organisms and determining their evolutionary relationships.
- _________ is the scientific discipline of how organisms are named and classified.
- A _______ consists of two components, instituted in the 18th century by _________.
- The first part is the name of the ______ to which the species belongs.
- The second part, called the _______ _________, is unique for each species within the genus.

Hierarchical Classification

- The hierarchical classification of organisms consists of the following levels with the most general or inclusive: ________, ________, ________, ________, ________, ________, ________.
- Each categorization at any level is called a _________.
- Systematics use branching diagrams called ________ _________ to depict hypotheses about evolutionary relationships. The branches reflect the hierarchical classification of groups nested within more inclusive groups.

- The Linnaean system, places related genera in the same family, families into orders, orders into classes, classes into phyla, phyla into kingdoms, and kingdoms into domains.
- Common names for organisms—such as monkeys, finch, and lilac—convey meaning in the casual usage, but they can also cause confusion. Each of these names, for example, refers to more than one species. Moreover, some common names do not accurately reflect the kind of organism they signify. Consider three “fishes”: jellyfish, crayfish, and silverfish.

How to read phylogenetic tree:

Figure 26.5

[Diagram of a phylogenetic tree with labels for branch points, taxa A-G, and key terms such as "Sister taxa," "This branch point forms a polytomy: an unresolved pattern of divergence."浪潮]
26.2: Phylogenies are inferred from morphological and molecular data

Morphological and Molecular Homologies
What are homologous structures?

Example of morphological homology:
- _______ or other _______ are homologous if they are descended from sequences carried by a common ancestor.
- Organisms that share very _______ morphologies or DNA sequences are likely to be more _______ related than organisms with vastly _______ structures or sequences.
- In some cases, the morphological divergence between related species can be _______ and their genetic divergence _______ (or vice versa).

Example:

Homology or Analogy

What is analogy?

- ___________ occurs when similar ______ pressure and ______ selection produce similar adaptations in organisms from different evolutionary lineages.

Example of convergent evolution:

26.3 Shared characters are used to construct phylogenetic trees

- ___________ shows patterns of shared characteristics among taxa and forms the basis of a phylogenetic tree
- The _______ within a tree is a group of species that includes an ancestral species and all its descendants. Clades are monophyletic.
- Shared derived characters are used to construct cladograms.
- E.g- hair is shared derived character of mammals
- A _______ _______ _______ is one that originated in an ancestor of the taxon.
- E.g- all mammals have backbones but a backbone does not distinguish a mammal from another vertebrae
Figure 26.10

- **Group** signifies that it consists of an ancestral species and all of its descendants
- **Paraphyletic group** consists of an ancestral species and some, but not all, of its descendants
- **Polyphyletic group** includes taxa with different ancestors

Chapter 26.4: An organism’s evolutionary history is documented in its genome

- The rate of evolution of ________ sequences varies from one part of the ____________ to another
- Comparing the different sequences helps us to investigate relationships between groups of organisms that ________ a long time ago
- DNA that codes for ribosomal RNA changes relatively slowly – useful for relationships between ________ that diverged hundreds of millions of years ago
- DNA that codes for mitochondrial DNA (mtDNA) evolves rapidly – useful for recent evolutionary events

Gene Duplications and Gene Families

- Gene duplication plays an important role in evolution because it ___________ the number of genes in the genome, providing ________ opportunities for further evolutionary changes.
- There are two types of homologous genes:
 - Orthologous genes
 - Paralogous genes
- ____________ genes are those found in different species, and their divergence traces back to the speciation events that produced the species

Chapter 26.5: Molecular Clocks Help Track Evolutionary Time

- ____________, a yardstick for measuring the absolute time of evolutionary change based on the observation that some genes and other regions of genomes appear to evolve at constant rates.
- To measure the molecular clock of a gene that has a reliable average rate of evolution, we graph the number of ________
- The same gene may evolve at different rates in different groups of organisms.
- ____________ Theory - much evolutionary change in genes and proteins has no effect on fitness and therefore is not influenced by natural selection.

Problems with Molecular Clocks

- Many irregularities are likely to be the result of natural selection in which certain DNA changes are favored over others
- Researchers attempt to extend molecular clocks beyond the time span documented by the fossil record.
- Making uncertain estimations

Solution

- Calibrate molecular clocks with many genes rather than just one or a few genes

Chapter 26.6: New Information Continues to revise our understanding of the tree of life

- What does the three-domain system consist of?

- The domains Bacteria and Archaea contain __________ organisms, and Eukarya contains __________ organisms.
Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Bacteria</th>
<th>Archaea</th>
<th>Eukarya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear envelope</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane-enclosed organelles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histone proteins associated with DNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circular chromosome</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- List three ways Bacteria and Archaea are similar.

- How is Archaea more closely related to Eukarya than Bacteria?